需要金币:![]() ![]() |
资料包括:完整论文 | ![]() |
![]() |
转换比率:金额 X 10=金币数量, 例100元=1000金币 | 论文字数:5839 | ![]() | |
折扣与优惠:团购最低可5折优惠 - 了解详情 | 论文格式:Word格式(*.doc) | ![]() |
摘 要:函数的凹凸性是一个重要的研究内容,它在优化理论、泛函分析、不等式证明等方面都.不同的定义和函数凹凸性的判定方法,加深了对函数凹凸性的认识,对于函数凹凸性在解决拐点问题、极值问题和证明不等式等方面的应用,我将以具体实例来加以说明.
关键词:凹凸性;不等式;拐点;极值
目 录 摘 要 ABSTRACT 1.函数凹凸性的定义及性质-1 1.1函数凹凸性的定义-1 1.1.1一元函数凹凸性的定义-1 1.1.2多元函数凹凸性的定义-2 1.2函数凹凸性的相关性质-3 1.2.1一元函数凹凸性的相关定理-3 1.2.2一元函数凹凸性的相关推论-4 1.2.3多元函数凹凸性的相关定理-5 2.函数凹凸性的判定-6 2.1一元函数凹凸性的判定-6 2.2多元函数凹凸性的判定-7 3.函数凹凸性的应用-11 3.1解决拐点问题-11 3.2解决极值问题-13 3.3在证明不等式中的应用-14 小结-16 参考文献-16 |